THE CRYSTAL AND MOLECULAR STRUCTURE OF TRICARBONYL($\boldsymbol{\eta}$-METHOXYTROPYLIUM)CHROMIUM TETRAFLUOROBORATE

ULRICH BEHRENS*, JÜRGEN KOPF,
Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin - Luther-King - Platz 6, D 2000 Hamburg 13 (B.R.D.)

KASTURI LAL and WILLIAM E. WATTS *
School of Physical Scıences, New University of Ulster, Coleraine (Northern Ireland)
(Received May 24th, 1984)

Summary

The structure of tricarbonyl(η-methoxytropylium)chromium tetrafluoroborate has been determined by single-crystal X-ray analysis. The salt crystallises in the triclinic space group $P 1$ with lattice constants a 740.3(2), b 956.7(3), c 1038.4(2) pm; α $89.10(2), \beta 73.32(2), \gamma 74.31(3)^{\circ} ; Z=2$. The final R index for 2914 observed reflections ($F \geq 4 \sigma$) is 0.045 . The cation contains an approximately planar sevenmembered ring symmetrically bonded to a $\mathrm{Cr}(\mathrm{CO})_{3}$ group. The $\mathrm{C}(1)-\mathrm{O}(\mathrm{Me})$ distance (133.8 pm) is intermediate between usual single- and double-bond values.

Introduction

Tricarbonyl(η-tropone)chromium was first reported [1] in 1970 and its crystal structure has been determined [2]. This showed that the chromium atom is bonded to the six vinylic carbon atoms of the ligand which is folded across $C(2), C(7)$ into an envelope conformation, the angle between the planes of $C(2), C(1), C(7)$ and the metal-bonded carbon atoms being 28.5° with the ketonic carbon displaced away from the metal atom; i.e. the structure is better described as an (η^{6}-triene)chromium complex (I) rather than as an ($\boldsymbol{\eta}^{7}$-tropylium)metal zwitterionic system (II). This complex undergoes protonation of the ketonic oxygen atom and the resulting cation is isolable in salts [1]. We recently found [3] that this cation is ca. two $\mathrm{p} K$ units more acidic in water than the conjugate acid (III) of tropone itself; i.e. π-complexation of tropone with a $\mathrm{Cr}(\mathrm{CO})_{3}$ group causes a substantial enhancement of its ketonic base strength. It is known from other work [4] that the tropylium cation is strongly stabilised by π-complexation with $\mathrm{Cr}(\mathrm{CO})_{3}$, suggesting that the protonated tropone complex may adopt an (η^{7}-hydroxytropylium)metal structure (IV) in preference to (η^{6}-triene)metal bonding (VI). In harmony with this conclusion, the spectroscopic
properties [3a] of this cation were found to be closer to those of the tricarbonyl(η tropylium)chromium cation than of the tropone complex (I).

(I)

(II)

(VII)

(III)
(IV, R = H
$V, R=M e)$

(VI)

In order to establish the mode of metal-ligand bonding, we attempted to determine the structure of the $\left(\mathrm{BF}_{4}{ }^{-}\right)$salt of the protonated tropone complex by X-ray diffraction analysis. Unfortunately, this was unsuccessful because the crystal decomposed in the X-ray beam. However, the $\left(\mathrm{BF}_{4}{ }^{-}\right)$salt of the related cation V is more stable in this respect and we now report a determination of its crystal structure *. This salt was prepared as described earlier [1] by hydride abstraction, using ($\mathrm{Ph}_{3} \mathrm{C}^{+}$) $\left(\mathrm{BF}_{4}^{-}\right)$, from the (η-7-endo-methoxycycloheptatriene) complex VII which was synthesised by the reaction of $(\mathrm{MeCN})_{3} \mathrm{Cr}(\mathrm{CO})_{3}$ with 7-methoxycycloheptatriene.

Crystal-structure determination

Single crystals of the salt $(V)\left(\mathrm{BF}_{4}{ }^{-}\right)$were sealed under N_{2} in thin-walled glass capillaries. X-ray experiments were performed using a Hilger and Watts diffractometer (temperature $20^{\circ} \mathrm{C}$; graphite-monochromated Mo- K_{α} radiation; $\theta / 2 \theta$ scan, $2 \theta \leq 60^{\circ} ; 2914$ independent reflections with $F \geq 4 \sigma$). The structure was solved by the standard heavy-atom method, and refined by full-matrix least-squares treatment. The positions of non-hydrogen atoms were refined using anisotropic temperature factors; hydrogen atoms were located with the aid of a difference Fourier map and their positions then refined isotropically. Two different orientations of the tetrahedral $\left(\mathrm{BF}_{4}{ }^{-}\right)$anion were found in the Fourier map, so two independent (BF_{4}) tetrahedra were refined with half weight, assuming an ideal tetrahedral geometry for every anion. The final refinement gave $R=0.045$ (unit weights). All calculations

[^0]TABLE 1
FRACTIONAL COORDINATES FOR $\left[\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{OMe}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right]^{+}\left(\mathrm{BF}_{4}{ }^{-}\right)$

Atom	x / a	y / b	2/c
Cr	0.29622(6)	0.18155(5)	0.31981(4)
C (1)	0.5591(4)	0.2530(3)	0.1795(3)
C(2)	0.3834(4)	0.3293(3)	$0.1552(3)$
C(3)	0.2356(5)	0.2737(4)	0.1344(3)
C(4)	0.2197(5)	0.1318(4)	0.1357(3)
C(5)	0.3478(6)	0.0075(4)	0.1635(4)
C(6)	0.5261(5)	-0.0040(4)	0.1910 (3)
C(7)	0.6163(4)	0.1028(3)	0.2011(3)
$\mathrm{O}(4)$	0.6828(3)	0.3217(2)	0.2032(2)
C(8)	0.6425(7)	0.4775(4)	0.1970 (5)
C(9)	0.0347(4)	0.2964(4)	0.4057(3)
$\mathrm{O}(1)$	-0.1206(4)	0.3646(3)	0.4572(3)
$\mathrm{C}(10)$	0.2426(4)	0.0390(4)	0.4425 (3)
O(2)	0.2122(4)	-0.0472(3)	0.5159(3)
C(11)	$0.3727(4)$	0.2684(4)	0.4516(3)
$\mathrm{O}(3)$	0.4217(4)	0.3185(4)	0.5287(3)
H(1)	$0.360(5)$	0.418(4)	0.160(3)
H(2)	$0.131(5)$	0.341(4)	0.124(3)
H(3)	$0.095(6)$	0.124(4)	$0.131(4)$
H(4)	$0.312(5)$	-0.074(4)	0.176(3)
H(5)	0.579(5)	-0.090(4)	0.214(3)
H(6)	0.726(5)	0.074(4)	0.232(3)
H(7)	0.517(6)	0.522(4)	0.268(4)
H(8)	0.752(6)	0.505(4)	0.214(4)
H(9)	$0.626{ }^{(6)}$	0.514(4)	$0.110(4)$
$\mathrm{B}(1){ }^{a}$	0.0492(6)	$-0.2620(4)$	0.1634(4)
F(11)	0.0308(6)	-0.1431(4)	0.0907(5)
$F(12)$	-0.0835(11)	-0.2292(8)	0.2867(4)
F(13)	$0.0171(10)$	-0.3710(4)	0.0996(7)
F(14)	0.2323(8)	-0.3045(6)	0.1765(8)
$\mathrm{B}(2){ }^{\text {a }}$	0.0464(6)	-0.2826(4)	0.1869(5)
F(21)	0.2406(6)	-0.3089(6)	0.1239(6)
F(22)	-0.0211(9)	-0.1517(5)	0.2570(8)
F(23)	0.0163(8)	-0.3877(6)	0.2723(6)
F(24)	-0.0503(11)	-0.2821(10)	0.0943(7)

${ }^{a}$ Two disordered (BF_{4}) tetrahedra (weight 0.5).
were carried out with the SHELX computer programs *. Final fractional coordinates are listed in Table 1.

Crystal data: $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BCrF}_{4} \mathrm{O}_{4}$, M.W.: 343.99, triclinic, $P \overline{1}, a$ 740.3(2), b 956.7(3), c 1038.4(2) pm; α 89.10(2), $\beta 73.32(2), \gamma 74.31(3)^{\circ} ; V 676.7 \times 10^{6} \mathrm{pm}^{3}, Z=2 ; d_{\text {calc. }}$ $1.688 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu\left(\mathrm{Mo}-K_{\alpha}\right) 7.62 \mathrm{~cm}^{-1}$; maximum crystal dimensions $0.6 \times 0.2 \times 0.1$ mm.

[^1]
Description of the molecular structure

The structure of the cation is shown in Fig. 1, which gives the atom-numbering system, and the bond lengths and bond angles are in Tables 2 and 3, respectively. The seven-membered ring is approximately planar, the largest deviation from the mean ring plane being that of $\mathrm{C}(1)$ which is displaced by ca. 3.5 pm in the direction away from the $\mathrm{Cr}(\mathrm{CO})_{3}$ group. The ring $\mathrm{C}-\mathrm{C}$ bond lengths deviate by less than 2 pm from an average value of 140 pm and the internal bond angles by less than 2.5° from the value (128.6°) for a regular heptagon. As is commonly found for (η^{5} -cyclopentadienyl)- and (η^{6}-benzene)-metal complexes, the ring $\mathrm{C}-\mathrm{H}$ bonds are bent by ca. 7° from the mean ring plane towards the metal atom. The oxygen and carbon atoms of the methoxy group lie close to the mean ring plane with displacements towards the metal-atom of 4 and 11 pm , respectively; the $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(4)-\mathrm{C}(8)$ and $C(7)-C(1)-O(4)-C(8)$ dihedral angles are ca. 3.5 and 175°, respectively. Whereas the $\mathrm{O}-\mathrm{Me}$ bond length is normal, the $\mathrm{C}(1)-\mathrm{O}(4)$ distance (133.8 pm) is intermediate between values usually associated with single and double bonds.

The $\mathrm{Cr}(\mathrm{CO})_{3}$ group is bonded to all of the ring carbon atoms in the usual "piano-stool" geometry with a metal-ring plane separation of 157 pm , and the associated bond lengths are unexceptional. The orientations of the tetrahedral $\left(\mathrm{BF}_{4}{ }^{-}\right)$anions in the crystal lattice are disordered, as is commonly found.

Fig. 1. ORTEP-Diagram of the molecular structure of the cation (V). The atoms are represented by their 50% probability ellipsoids for thermal motion.

TABLE 2
BOND LENGTHS IN $\left[\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{OMe}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right]^{+}\left(\mathrm{BF}_{4}{ }^{-}\right)$

Atoms	Distance (pm)	Atoms	Distance (pm)
(a) Chromium - ring carbon distances			
$\mathrm{Cr}-\mathrm{C}(1)$	233.2(3)	$\mathrm{Cr}-\mathrm{C}(5)$	222.2(3)
$\mathrm{Cr}-\mathrm{C}(2)$	226.3(3)	$\mathrm{Cr}-\mathrm{C}(6)$	222.9(3)
$\mathrm{Cr}-\mathrm{C}(3)$	221.7(3)	$\mathrm{Cr}-\mathrm{C}(7)$	225.6(3)
Cr-C(4)	223.5(3)		
(b) Chromium - carbonyl distances			
$\mathrm{Cr}-\mathrm{C}(9)$	190.8(3)	$\mathrm{C}(9)-\mathrm{O}(1)$	113.4(3)
$\mathrm{Cr}-\mathrm{C}(10)$	189.4(3)	$\mathrm{C}(10)-\mathrm{O}(2)$	113.8(4)
$\mathrm{Cr}-\mathrm{C}(11)$	190.3(3)	$C(11)-O(3)$	112.9(4)
(c) Ligand distances			
$\mathrm{C}(1)-\mathrm{C}(2)$	139.8(4)	C(6)-C(7)	138.3(5)
C(2)-C(3)	140.7(4)	$\mathrm{C}(7)-\mathrm{C}(1)$	141.8(4)
C(3)-C(4)	139.4(5)	$\mathrm{C}(1)-\mathrm{O}(4)$	133.8(3)
C(4)-C(5)	138.9(5)	$\mathrm{O}(4)-\mathrm{C}(8)$	144.3(4)
$\mathrm{C}(5)-\mathrm{C}(6)$	140.4(5)		
(d) Carbon-hydrogen distances			
C(2)-H	82(4)	C(6)-H	87(4)
C(3)-H	89(4)	C(7)-H	93(4)
C(4)-H	97(4)	C(8)-H	99(4)
C(5)-H	88(4)		98(5)
			99(5)
(e) Boron-fluorine distance (average value)			
B-F	135.2(5)		

TABLE 3
SELECTED BOND ANGLES IN $\left[\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{OMe}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right]^{+}\left(\mathrm{BF}_{4}{ }^{-}\right)$

Atoms	Angle (degrees)	Atoms	Angle (degrees)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	128.3	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(4)$	121.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	130.5	$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{O}(4)$	111.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	127.7	$\mathrm{C}(1)-\mathrm{O}(4)-\mathrm{C}(8)$	120.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	127.7	$\mathrm{Cr}-\mathrm{C}(9)-\mathrm{O}(1)$	179.7
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	129.8	$\mathrm{Cr}-\mathrm{C}(10)-\mathrm{O}(2)$	179.4
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	129.5	$\mathrm{Cr}-\mathrm{C}(11)-\mathrm{O}(3)$	178.7
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	126.3	$\mathrm{~F}-\mathrm{B}-\mathrm{F}$	109.5 (average)

Discussion

It is clear from the crystallographic analysis that the cation in the title salt is best described as an (η^{7}-tropylium) chromium complex (V). The ring has a regular heptagonal geometry and the $\mathrm{Cr}-\mathrm{C}(\mathrm{OMe})$ distance is only marginally longer than the other Cr -ring carbon distances. However, the slight shortening of the $\mathrm{C}-\mathrm{O}(\mathrm{Me})$ bond from the usual single-bond value and the approximate coplanarity of the methoxy group and the ring plane are suggestive of $p(d) \pi-p \pi$ interaction between $\mathrm{C}(1)$ and $\mathrm{O}(4)$ leading to partial double-bond character; cf., the ketonic carbonyl bond lengths in tropone [5] and its $\mathrm{Cr}(\mathrm{CO})_{3}$ complex (I) [2] are 126 and 123 pm , respectively, while normal $\mathrm{C}\left(s p^{2}\right)-\mathrm{O}$ single-bond lengths are in the range 136-140 pm [6].

It is highly likely [3] that the cations IV and V have a similar metal-ligand bonding arrangement and it may be concluded that the conjugate acid of the tropone complex I has the tricarbonyl(η^{7}-hydroxytropylium)chromium structure. In the tropone complex I, the separation of the Cr and $\mathrm{C}(1)$ atoms is 264 pm [2] indicating, at best, a weak bonding interaction. Attachment of an electrophile $\left(\mathrm{H}^{+}\right.$ or, formally, $\mathrm{CH}_{3}{ }^{+}$) to the ketonic oxygen atom of this complex is accompanied by flattening of the ligand, strengthening of the $\mathrm{Cr}-\mathrm{C}(1)$ bond, and removal of ring $\mathrm{C}-\mathrm{C}$ bond-length alternation.

Acknowledgements

We thank Mr. N.T. Leckey (New University of Ulster) for experimental assistance, Dr. O.S. Mills (University of Manchester) for helpful information, and the S.E.R.C. for a post-doctoral fellowship (to K.L.).

References

1 P.L. Pauson and K.H. Todd, J. Chem, Soc. C, (1970) 2315.
2 M.J. Barrow and O.S. Mills, J. Chem. Soc., Chem. Commun., (1971) 119.
3 (a) K. Lal, N.T. Leckey and W.E. Watts, J. Organomet. Chem., 254 (1983) 193; (b) 258 (1983) 205.
4 C.A. Bunton, K. Lal and W.E. Watts, J. Organomet. Chem., 247 (1983) C14; C.A. Bunton, M.M. Mhala, J.R. Moffatt and W.E. Watts, ibid., 253 (1983) C33.
5 M.J. Barrow, O.S. Mills and G. Filippıni, J. Chem. Soc., Chem. Commun., (1973) 66.
6 Tables of Interatomic Distances and Configuration in Molecules and Ions. Chem. Soc. Special Publications Nos. 11 (1958) and 18 (1965), The Chemical Society, London

[^0]: * Dr. O.S. Mills (University of Manchester) has informed us that his group investigated the crystal structure of a salt of the cation V some years ago and obtaned results very similar to those described heren.

[^1]: * SHELX is a system of computer programs for X-ray structure determination devised by G.M. Sheldrick, 1976.

